

Maths Calculation Policy

Stewart Headlam and Hague Schools' Federation

Power Maths calculation policy, UPPER KS2

The following pages show the Power Maths progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the CPA (concrete, pictorial, abstract) approach across Power Maths helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods.

KEY STAGE 2

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.

Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

Addition and subtraction: Children build on their column methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage.

Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods.

Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen.

Multiplication and division: Building on their understanding, children develop methods to multiply up to 4-digit numbers by single-digit and 2-digit numbers.

Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10,100 and 1,000.

Written division methods are introduced and adapted for division by single-digit and 2-digit numbers and are understood alongside the area model and place value. In Year 6, children develop a secure understanding of how division is related to fractions.

Multiplication and division of decimals are also introduced and refined in Year 6.

Fractions: Children find fractions of amounts, multiply a fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them.

Understanding of decimals with up to 3 decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic.

Children develop an understanding of percentages in relation to hundredths, and they understand how to work with common percentages: $50 \%, 25 \%, 10 \%$ and 1%.

[^0]

Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 3

		$\begin{array}{ll}\text { Jen } & \mathrm{f2,600} \\ \text { Holly } \\ \underbrace{\underbrace{£ 2,600}}_{£ 4,050} \mathrm{fl,450} \\ & \end{array}$?	
Adding tenths	Link measure with addition of decimals. Two lengths of fencing are 0.6 m and 0.2 m . How long are they when added together? $0.6 \mathrm{~m}$ 0.2 m \square	Use a bar model with a number line to add tenths. $0.6+0.2=0.8$ 6 tenths +2 tenths $=8$ tenths	Understand the link with adding fractions. $\begin{aligned} & \frac{6}{10}+\frac{2}{10}=\frac{8}{10} \\ & 6 \text { tenths }+2 \text { tenths }=8 \text { tenths } \\ & 0.6+0.2=0.8 \end{aligned}$
Adding decimals using column addition	Use place value equipment to represent additions. Show $0.23+0.45$ using place value counters.	Use place value equipment on a place value grid to represent additions. Represent exchange where necessary. $$ Include examples where the numbers of decimal places are different.	Add using a column method, ensuring that children understand the link with place value. $\begin{array}{r} \mathrm{O} \cdot \text { Tth Hth } \\ \hline 0 \cdot 2 \\ +0 \cdot 4 \\ +0 \cdot 4 \\ \hline 0 \cdot 6 \\ \hline \end{array}$ Include exchange where required, alongside an understanding of place value. $$

Power Maths © Pearson 2019

Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for
the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 4

[^1]| | | Athletics Stadium 75,450
 Hockey Centre \square
 Velodrome 15,735 | Use approximation to check calculations. I calculated $18,000+4,000$ mentally to check my subtraction. |
| :---: | :---: | :---: | :---: |
| Choosing efficient methods | | | To subtract two large numbers that are close, children find the difference by counting on. $2,002-1,995=?$
 Use addition to check subtractions. I calculated 7,546-2,355 = 5,191. I will check using the inverse. |
| Subtracting decimals | Explore complements to a whole number by working in the context of length. $\begin{aligned} & 0.49 \mathrm{~m} \\ & \mathrm{Im}-\square \mathrm{m}=\square \mathrm{m} \\ & 1-0.49=? \end{aligned}$ | Use a place value grid to represent the stages of column subtraction, including exchanges where required. $5 \cdot 74-2 \cdot 25=?$ | Use column subtraction, with an understanding of place value, including subtracting numbers with different numbers of decimal places.$3.921-3.75=?$0 \cdot Tth Hth Thth 1 (|

Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 6

Power Maths © Pearson 2019

Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 7

Power Maths calculation policy

	8 is a cube number.	12 is not a square number, because you cannot multiply a whole number by itself to make 12.	
Multiplying by 10, 100 and 1,000	Use place value equipment to multiply by 10,100 and 1,000 by unitising.	Understand the effect of repeated multiplication by 10 . \square	Understand how exchange relates to the digits when multiplying by 10, 100 and 1,000. $\begin{aligned} & 17 \times 10=170 \\ & 17 \times 100=17 \times 10 \times 10=1,700 \\ & 17 \times 1,000=17 \times 10 \times 10 \times 10=17,000 \end{aligned}$
Multiplying by multiples of 10, 100 and 1,000	Use place value equipment to explore multiplying by unitising. 5 groups of 3 ones is 15 ones. 5 groups of 3 tens is 15 tens.	Use place value equipment to represent how to multiply by multiples of 10,100 and 1,000. $4 \times 3=12$ $6 \times 4=24$ $4 \times 300=1,200$ $6 \times 400=2,400$	Use known facts and unitising to multiply. $\begin{aligned} & 5 \times 4=20 \\ & 5 \times 40=200 \\ & 5 \times 400=2,000 \\ & 5 \times 4,000-20,000 \\ & 5,000 \times 4=20,000 \end{aligned}$

[^2]Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 8

Power Maths © Pearson 2019

Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 9

Power Maths © Pearson 2019

Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 10

Power Maths © Pearson 2019

Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 11

	-••••○○○ 00000000 $\begin{aligned} & 24 \div 3=8 \\ & 24 \div 8=3 \end{aligned}$ 8 and 3 are factors of 24 because they divide 24 exactly. $24 \div 5=4$ remainder 4 . 5 is not a factor of 24 because there is a remainder.	$\begin{aligned} & 13 \div 1=13 \\ & 13 \div 2=6 r 1 \\ & 13 \div 4=4 r 1 \end{aligned}$ 1 and 13 are the only factors of 13. 13 is a prime number.	I know that 31 is a prime number because it can be divided by only 1 and itself without leaving a remainder. I know that 33 is not a prime number as it can be divided by 1, 3, 11 and 33. I know that 1 is not a prime number, as it has only 1 factor.
Understanding inverse operations and the link with multiplication, grouping and sharing	Use equipment to group and share and to explore the calculations that are present. I have 28 counters. I made 7 groups of 4 . There are 28 in total. I have 28 in total. I shared them equally into 7 groups. There are 4 in each group. I have 28 in total. I made groups of 4. There are 7 equal groups.	Represent multiplicative relationships and explore the families of division facts. $\begin{aligned} & 60 \div 4=15 \\ & 60 \div 15=4 \end{aligned}$	Represent the different multiplicative relationships to solve problems requiring inverse operations. $12 \div 3=\square$ $12 \div$ \square $=3$ \square $\times 3=12$ \square $\div 3=12$ Understand missing number problems for division calculations and know how to solve them using inverse operations. $\begin{aligned} & 22 \div ?=2 \\ & 22 \div 2=? \\ & ? \div 2=22 \\ & ? \div 22=2 \end{aligned}$
Dividing whole numbers by 10, 100 and 1,000	Use place value equipment to support unitising for division. $4,000 \div 1,000$	Use a bar model to support dividing by unitising. $380 \div 10=38$	Understand how and why the digits change on a place value grid when dividing by 10, 100 or 1,000.

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 13

		12 ones divided into groups of 4. There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$	
Dividing up to four digits by a single digit using short division	Explore grouping using place value equipment. $268 \div 2=?$ There is 1 group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones. $264 \div 2=134$	Use place value equipment on a place value grid alongside short division. The model uses grouping. A sharing model can also be used, although the model would need adapting. Lay out the problem as a short division. There is 1 group of 4 in 4 tens. There are 2 groups of 4 in 8 ones. Work with divisions that require exchange.	Use short division for up to 4-digit numbers divided by a single digit. $\begin{aligned} & \begin{array}{rrrr} 0 & 5 & 5 & 6 \\ 7 & 3^{3} 8{ }^{3} q & 4 \\ 4 \end{array} \\ & 3,892 \div 7=556 \end{aligned}$ Use multiplication to check. $\begin{aligned} & 556 \times 7=? \\ & 6 \times 7=42 \\ & 50 \times 7=350 \\ & 500 \times 7=3500 \\ & 3,500+350+42=3,892 \end{aligned}$

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 15

$\begin{aligned} & 10,100 \text { and } \\ & 1,000 \end{aligned}$	2 ones are 20 tenths. 20 tenths divided by 10 is 2 tenths.	1.5 is 1 one and 5 tenths. This is equivalent to 10 tenths and 50 hundredths. 10 tenths divided by 10 is 1 tenth. 50 hundredths divided by 10 is 5 hundredths. 1.5 divided by 10 is 1 tenth and 5 hundredths. $1 \cdot 5 \div 10=0.15$	0 \bullet Tth Hth Thth 0 \bullet 8 5 0 \cdot $>_{0}$ \geq_{8} $>_{5}$$0.85 \div 10=0.085$O \cdot Tth Hth Thth 8 \cdot 5 0 \bullet 0 \rightarrow $8.5 \div 100=0.085$
Understanding the relationship between fractions and division	Use sharing to explore the link between fractions and division. 1 whole shared between 3 people. Each person receives one-third. 	Use a bar model and other fraction representations to show the link between fractions and division. $1 \div 3=\frac{1}{3}$	Use the link between division and fractions to calculate divisions. $\begin{aligned} & 5 \div 4=\frac{5}{4}=1 \frac{1}{4} \\ & 11 \div 4=\frac{11}{4}=2 \frac{3}{4} \end{aligned}$

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 16

[^3]Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 17

Selecting mental methods for larger numbers where appropriate	Represent 7-digit numbers on a place value grid, and use this to support thinking and mental methods. $2,411,301+500,000=?$ This would be 5 more counters in the HTh place. So, the total is $2,911,301$. $2,411,301+500,000=2,911,301$	Use a bar model to support thinking in addition problems. $257,000+99,000=?$ I added 100 thousands then subtracted 1 thousand. 257 thousands + 100 thousands $=357$ thousands $\begin{aligned} & 257,000+100,000=357,000 \\ & 357,000-1,000=356,000 \end{aligned}$ So, $257,000+99,000=356,000$	Use place value and unitising to support mental calculations with larger numbers. $\begin{aligned} & 195,000+6,000=? \\ & 195+5+1=201 \end{aligned}$ 195 thousands +6 thousands $=201$ thousands So, $195,000+6,000=201,000$
Understanding order of operations in calculations	Use equipment to model different interpretations of a calculation with more than one operation. Explore different results.	Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations.	Understand the correct order of operations in calculations without brackets. Understand how brackets affect the order of operations in a calculation. $\begin{aligned} & 4+6 \times 16 \\ & 4+96=100 \\ & (4+6) \times 16 \\ & 10 \times 16=160 \end{aligned}$

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for
the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 18

Year 6 Subtraction			
Comparing and selecting efficient methods	Use counters on a place value grid to represent subtractions of larger numbers.	Compare subtraction methods alongside place value representations. Use a bar model to represent calculations, including 'find the difference' with two bars as comparison.	Compare and select methods. Use column subtraction when mental methods are not efficient. Use two different methods for one calculation as a checking strategy. Use column subtraction for decimal problems, including in the context of measure.
Subtracting mentally with larger numbers		Use a bar model to show how unitising can support mental calculations. $950,000-150,000$ That is 950 thousands - 150 thousands 950	Subtract efficiently from powers of 10. $10,000-500=$?

[^4]Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 19

Power Maths calculation policy

		So, the difference is 800 thousands. $950,000-150,000=800,000$	
Year 6 Multiplication			
Multiplying up to a 4-digit number by a single digit number	Use equipment to explore multiplications. 4 groups of 2,345 This is a multiplication: $\begin{aligned} & 4 \times 2,345 \\ & 2,345 \times 4 \end{aligned}$	Use place value equipment to compare methods. Method 2	Understand area model and short multiplication. Compare and select appropriate methods for specific multiplications. Method 3
Multiplying up to a 4-digit number by a 2-digit number		Use an area model alongside written multiplication. Method I	Use compact column multiplication with understanding of place value at all stages. $\begin{array}{llllll} & 1 & 2 & 3 & 5 & \\ \times & & 2 & 1 & \\ \hline & 1 & 2 & 3 & 5 & \\ \hline & 4 & 1 \times 1,235 \\ 2 & 4 & 7 & 0 & 0 & 20 \times 1,235 \\ \hline 2 & 5 & 9 & 3 & 5 & 21 \times 1,235 \\ \hline \end{array}$

[^5]Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 20

Using knowledge of factors and partitions to compare methods for multiplications	Use equipment to understand square numbers and cube numbers. $\begin{aligned} & 5 \times 5=5^{2}=25 \\ & 5 \times 5 \times 5=5^{3}=25 \times 5=125 \end{aligned}$	Compare methods visually using an area model. Understand that multiple approaches will produce the same answer if completed accurately. Represent and compare methods using a bar model.	Use a known fact to generate families of related facts. Use factors to calculate efficiently. $\begin{aligned} & 15 \times 16 \\ = & 3 \times 5 \times 2 \times 8 \\ = & 3 \times 8 \times 2 \times 5 \\ = & 24 \times 10 \\ = & 240 \end{aligned}$
Multiplying by 10, 100 and 1,000	Use place value equipment to explore exchange in decimal multiplication.	Understand how the exchange affects decimal numbers on a place value grid.	Use knowledge of multiplying by 10, 100 and 1,000 to multiply by multiples of 10,100 and 1,000. $\begin{aligned} & 8 \times 100=800 \\ & 8 \times 300=800 \times 3 \end{aligned}$

Power Maths © Pearson 2019

Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 21

Power Maths calculation policy

	T 0 \bullet Tth \bullet $\div(\cdot)($ Represent 0.3. Multiply by 10 . Exchange each group of ten tenths. $0.3 \times 10=?$ 0.3 is 3 tenths. 10×3 tenths are 30 tenths. 30 tenths are equivalent to 3 ones.	T 0 \bullet Tth \bullet 3$0.3 \times 10=3$	$\begin{aligned} = & 2,400 \\ 2 \cdot 5 \times 10 & =25 \\ 2 \cdot 5 \times 20 & =2 \cdot 5 \times 10 \times 2 \\ & =50 \end{aligned}$
Multiplying decimals	Explore decimal multiplications using place value equipment and in the context of measures. 3 groups of 4 tenths is 12 tenths. 4 groups of 3 tenths is 12 tenths. $1.3 \mathrm{~cm} \mathrm{l.3} \mathrm{~cm} \mathrm{l.3} \mathrm{~cm} 1.3 \mathrm{~cm}$ $\begin{aligned} & 4 \times 1 \mathrm{~cm}=4 \mathrm{~cm} \\ & 4 \times 0 \cdot 3 \mathrm{~cm}=1.2 \mathrm{~cm} \\ & 4 \times 1 \cdot 3=4+1 \cdot 2=5 \cdot 2 \mathrm{~cm} \end{aligned}$	Represent calculations on a place value grid.$\begin{aligned} & 3 \times 3=9 \\ & 3 \times 0.3=0 \cdot 9 \end{aligned}$T O \bullet Tth •(1) (1) ©(\%) Understand the link between multiplying decimals and repeated addition.	Use known facts to multiply decimals. $\begin{aligned} & 4 \times 3=12 \\ & 4 \times 0 \cdot 3=1 \cdot 2 \\ & 4 \times 0 \cdot 03=0 \cdot 12 \\ & \\ & 20 \times 5=100 \\ & 20 \times 0 \cdot 5=10 \\ & 20 \times 0 \cdot 05=1 \end{aligned}$ Find families of facts from a known multiplication. I know that $18 \times 4=72$. This can help me work out: $\begin{aligned} & 1.8 \times 4=? \\ & 18 \times 0.4=? \\ & 180 \times 0 \cdot 4=? \\ & 18 \times 0.04=? \end{aligned}$

Power Maths © Pearson 2019
Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 22

Dividing by a 2-digit number using long division	Use equipment to build numbers from groups. 182 divided into groups of 13. There are 14 groups.	Use a divisio $377 \div$ 13 \square ${ }_{13}$ \square	area model alongside written o model the process. $3=?$ $?$ 377 \square \square $3=29$	Use long division where factors are not useful (for example, when dividing by a 2-digit prime number). Write the required multiples to support the division process. $377 \div 13=?$ A slightly different layout may be used, with the division completed above rather than at the side.

			$\begin{array}{rrr} & 3 \\ \hline 21 & 7 & 9 \\ \hline \end{array}$ $\begin{array}{r} \\ 3 \\ 21 \\ \hline 798 \\ -\quad 630 \\ \hline 1668 \\ -\quad 688 \\ \hline \end{array}$ Divisions with a remainder explored in problem-solving contexts.
Dividing by 10, 100 and 1,000	Use place value equipment to explore division as exchange. Exchange each 0.1 for ten 0.01 s . Divide 20 counters by 10 0.2 is 2 tenths. 2 tenths is equivalent to 20 hundredths. 20 hundredths divided by 10 is 2 hundredths.	Represent division to show the relationship with multiplication. Understand the effect of dividing by 10,100 and 1,000 on the digits on a place value grid. Understand how to divide using division by 10,100 and 1,000 . $12 \div 20=?$ \qquad \square \square ? $?$ $1.2 \div 2=0.6$	Use knowledge of factors to divide by multiples of 10, 100 and 1,000. $40 \div 50=$ \square $40 \rightarrow \div \div \rightarrow+10 \rightarrow ?$ $\begin{aligned} & 40 \div 5=8 \\ & 8 \div 10=0 \cdot 8 \end{aligned}$ So, $40 \div 50=0.8$
Dividing decimals	Use place value equipment to explore division of decimals.	Use a bar model to represent divisions.	Use short division to divide decimals with up to 2 decimal places.

Power Maths © Pearson 2019

Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 26

[^0]: Power Maths © Pearson 2019
 Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 2

[^1]: Power Maths © Pearson 2019
 Copying permitted for purchasing institution only. This material is not copyright free. Pearson is not responsible for the quality, accuracy or fitness for purpose of the materials contained in the Word files once edited. 5

[^2]: Power Maths © Pearson 2019

[^3]: Power Maths © Pearson 2019

[^4]: Power Maths © Pearson 2019

[^5]: Power Maths © Pearson 2019

